328 research outputs found

    Accounting for a Quantitative Trait Locus for Plasma Triglyceride Levels: Utilization of Variants in Multiple Genes

    Get PDF
    For decades, research efforts have tried to uncover the underlying genetic basis of human susceptibility to a variety of diseases. Linkage studies have resulted in highly replicated findings and helped identify quantitative trait loci (QTL) for many complex traits; however identification of specific alleles accounting for linkage remains elusive. The purpose of this study was to determine whether with a sufficient number of variants a linkage signal can be fully explained.We used comprehensive fine-mapping using a dense set of single nucleotide polymorphisms (SNPs) across the entire quantitative trait locus (QTL) on human chromosome 7q36 linked to plasma triglyceride levels. Analyses included measured genotype and combined linkage association analyses.Screening this linkage region, we found an over representation of nominally significant associations in five genes (MLL3, DPP6, PAXIP1, HTR5A, INSIG1). However, no single genetic variant was sufficient to account for the linkage. On the other hand, multiple variants capturing the variation in these five genes did account for the linkage at this locus. Permutation analyses suggested that this reduction in LOD score was unlikely to have occurred by chance (p = 0.008).With recent findings, it has become clear that most complex traits are influenced by a large number of genetic variants each contributing only a small percentage to the overall phenotype. We found that with a sufficient number of variants, the linkage can be fully explained. The results from this analysis suggest that perhaps the failure to identify causal variants for linkage peaks may be due to multiple variants under the linkage peak with small individual effect, rather than a single variant of large effect

    Heritability of cardiovascular risk factors in a Brazilian population: Baependi Heart Study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The heritability of cardiovascular risk factors is expected to differ between populations because of the different distribution of environmental risk factors, as well as the genetic make-up of different human populations.</p> <p>Methods</p> <p>The purpose of this analysis was to evaluate genetic and environmental influences on cardiovascular risk factor traits, using a variance component approach, by estimating the heritability of these traits in a sample of 1,666 individuals in 81 families ascertained randomly from a highly admixed population of a city in a rural area in Brazil.</p> <p>Results</p> <p>Before adjustment for sex, age, age<sup>2</sup>, and age Γ— sex interaction, polygenic heritability of systolic (SBP) and diastolic (DBP) blood pressure were 15.0% and 16.4%, waist circumference 26.1%, triglycerides 25.7%, fasting glucose 32.8%, HDL-c 31.2%, total cholesterol 28.6%, LDL-c 26.3%, BMI 39.1%. Adjustment for covariates increased polygenic heritability estimates for all traits mainly systolic and diastolic blood pressure (25.9 and 26.2%, respectively), waist circumference (40.1%), and BMI (51.0%).</p> <p>Conclusion</p> <p>Heritability estimates for cardiovascular traits in the Brazilian population are high and not significantly different from other studied worldwide populations. Mapping efforts to identify genetic loci associated with variability of these traits are warranted.</p

    Cut off values of waist circumference & associated cardiovascular risk in egyptians

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent guidelines stressed the need to adopt different values of waist circumference (WC) measurements to define abdominal obesity in different ethnic groups. The aim of this study is to identify WC cutoff points in normotensive and hypertensive subjects which are diagnostic of abdominal obesity in a Middle Eastern population and the prevalence of abdominal obesity in a nationwide sample.</p> <p>Methods</p> <p>Data were collected during phase-2 of the Egyptians National Hypertension Project survey. Blood pressure, anthropometric measurements and laboratory studies were performed according to a standardized protocol by trained personnel. To derive the cutoff points for WC, we applied the factor analysis on CV risk factors: diabetes mellitus, decrease in HDL-C and increase in LDL-C, triglycerides and left ventricular mass index by echocardiography.</p> <p>Results</p> <p>The sample included 2313 individuals above the age of 25 years. WC values (mean Β± SD) were 88 Β± 14 cm and 95 Β± 14 cm for normotensive (NT) and hypertensive (HT) men respectively, and 89.6 Β± 14.7 cm and 95.7 Β± 15.9 cm for NT and HT women respectively. Applying factor analysis, the weighted average cutoff points were 93.5 cm for both NT and HT men and 91.5 and 92.5 cm for NT and HT women respectively. Based on these thresholds, the prevalence of abdominal obesity was 48% in men and 51.5% in women.</p> <p>Conclusion</p> <p>This is the first report of specific abdominal obesity cutoff points in a Middle Eastern country. The cutoff points were different from the Europid standards. There is a high prevalence rate of abdominal obesity among Egyptians which is associated with increased prevalence of cardiometabolic risk factors.</p

    Sexual Dimorphic Regulation of Body Weight Dynamics and Adipose Tissue Lipolysis

    Get PDF
    BACKGROUND: Successful reduction of body weight (BW) is often followed by recidivism to obesity. BW-changes including BW-loss and -regain is associated with marked alterations in energy expenditure (EE) and adipose tissue (AT) metabolism. Since these processes are sex-specifically controlled, we investigated sexual dimorphisms in metabolic processes during BW-dynamics (gain-loss-regain). RESEARCH DESIGN: Obesity was induced in C57BL/6J male (m) and female (f) mice by 15 weeks high-fat diet (HFD) feeding. Subsequently BW was reduced (-20%) by caloric restriction (CR) followed by adaptive feeding, and a regain-phase. Measurement of EE, body composition, blood/organ sampling were performed after each feeding period. Lipolysis was analyzed ex-vivo in gonadal AT. RESULTS: Male mice exhibited accelerated BW-gain compared to females (relative BW-gain m:140.5Β±3.2%; f:103.7Β±6.5%; p<0.001). In consonance, lean mass-specific EE was significantly higher in females compared to males during BW-gain. Under CR female mice reached their target-BW significantly faster than male mice (m:12.2 days; f:7.6 days; p<0.001) accompanied by a sustained sex-difference in EE. In addition, female mice predominantly downsized gonadal AT whereas the relation between gonadal and total body fat was not altered in males. Accordingly, only females exhibited an increased rate of forskolin-stimulated lipolysis in AT associated with significantly higher glycerol concentrations, lower RER-values, and increased AT expression of adipose triglyceride lipase (ATGL) and hormone sensitive lipase (HSL). Analysis of AT lipolysis in estrogen receptor alpha (ERΞ±)-deficient mice revealed a reduced lipolytic rate in the absence of ERΞ± exclusively in females. Finally, re-feeding caused BW-regain faster in males than in females. CONCLUSION: The present study shows sex-specific dynamics during BW-gain-loss-regain. Female mice responded to CR with an increase in lipolytic activity, and augmented lipid-oxidation leading to more efficient weight loss. These processes likely involve ERΞ±-dependent signaling in AT and sexual dimorphic regulation of genes involved in lipid metabolism

    QTLs of factors of the metabolic syndrome and echocardiographic phenotypes: the hypertension genetic epidemiology network study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In a previous study of the Hypertension Genetic Epidemiology Network (HyperGEN) we have shown that metabolic syndrome (MetS) risk factors were moderately and significantly associated with echocardiographic (ECHO) left ventricular (LV) phenotypes.</p> <p>Methods</p> <p>The study included 1,393 African Americans and 1,133 whites, stratified by type 2 diabetes mellitus (DM) status. Heritabilities of seven factor scores based on the analysis of 15 traits were sufficiently high to pursue QTL discovery in this follow-up study.</p> <p>Results</p> <p>Three of the QTLs discovered relate to combined MetS-ECHO factors of "blood pressure (BP)-LV wall thickness" on chromosome 3 at 225 cM with a 2.8 LOD score, on chromosome 20 at 2.1 cM with a 2.6 LOD score; and for "LV wall thickness" factor on chromosome 16 at 113.5 with a 2.6 LOD score in whites. The remaining QTLs include one for a "body mass index-insulin (BMI-INS)" factor with a LOD score of 3.9 on chromosome 2 located at 64.8 cM; one for the same factor on chromosome 12 at 91.4 cM with a 3.3 LOD score; one for a "BP" factor on chromosome 19 located at 67.8 cM with a 3.0 LOD score. A suggestive linkage was also found for "Lipids-INS" with a 2.7 LOD score located on chromosome 11 at 113.1 cM in African Americans. Of the above QTLs, the one on chromosome 12 for "BMI-INS" is replicated in both ethnicities, (with highest LOD scores in African Americans). In addition, the QTL for "LV wall thickness" on chromosome 16q24.2-q24.3 reached its local maximum LOD score at marker D16S402, which is positioned within the 5th intron of the <it>cadherin 13 </it>gene, implicated in heart and vascular remodeling.</p> <p>Conclusion</p> <p>Our previous study and this follow-up suggest gene loci for some crucial MetS and cardiac geometry risk factors that contribute to the risk of developing heart disease.</p

    Do obese but metabolically normal women differ in intra-abdominal fat and physical activity levels from those with the expected metabolic abnormalities? A cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Obesity remains a major public health problem, associated with a cluster of metabolic abnormalities. However, individuals exist who are very obese but have normal metabolic parameters. The aim of this study was to determine to what extent differences in metabolic health in very obese women are explained by differences in body fat distribution, insulin resistance and level of physical activity.</p> <p>Methods</p> <p>This was a cross-sectional pilot study of 39 obese women (age: 28-64 yrs, BMI: 31-67 kg/m<sup>2</sup>) recruited from community settings. Women were defined as 'metabolically normal' on the basis of blood glucose, lipids and blood pressure. Magnetic Resonance Imaging was used to determine body fat distribution. Detailed lifestyle and metabolic profiles of participants were obtained.</p> <p>Results</p> <p>Women with a healthy metabolic profile had lower intra-abdominal fat volume (geometric mean 4.78 l [95% CIs 3.99-5.73] vs 6.96 l [5.82-8.32]) and less insulin resistance (HOMA 3.41 [2.62-4.44] vs 6.67 [5.02-8.86]) than those with an abnormality. The groups did not differ in abdominal subcutaneous fat volume (19.6 l [16.9-22.7] vs 20.6 [17.6-23.9]). A higher proportion of those with a healthy compared to a less healthy metabolic profile met current physical activity guidelines (70% [95% CIs 55.8-84.2] vs 25% [11.6-38.4]). Intra-abdominal fat, insulin resistance and physical activity make independent contributions to metabolic status in very obese women, but explain only around a third of the variance.</p> <p>Conclusion</p> <p>A sub-group of women exists who are metabolically normal despite being very obese. Differences in fat distribution, insulin resistance, and physical activity level are associated with metabolic differences in these women, but account only partially for these differences. Future work should focus on strategies to identify those obese individuals most at risk of the negative metabolic consequences of obesity and on identifying other factors that contribute to metabolic status in obese individuals.</p

    Fetuin-A Induces Cytokine Expression and Suppresses Adiponectin Production

    Get PDF
    BACKGROUND: The secreted liver protein fetuin-A (AHSG) is up-regulated in hepatic steatosis and the metabolic syndrome. These states are strongly associated with low-grade inflammation and hypoadiponectinemia. We, therefore, hypothesized that fetuin-A may play a role in the regulation of cytokine expression, the modulation of adipose tissue expression and plasma concentration of the insulin-sensitizing and atheroprotective adipokine adiponectin. METHODOLOGY AND PRINCIPAL FINDINGS: Human monocytic THP1 cells and human in vitro differenttiated adipocytes as well as C57BL/6 mice were treated with fetuin-A. mRNA expression of the genes encoding inflammatory cytokines and the adipokine adiponectin (ADIPOQ) was assessed by real-time RT-PCR. In 122 subjects, plasma levels of fetuin-A, adiponectin and, in a subgroup, the multimeric forms of adiponectin were determined. Fetuin-A treatment induced TNF and IL1B mRNA expression in THP1 cells (p<0.05). Treatment of mice with fetuin-A, analogously, resulted in a marked increase in adipose tissue Tnf mRNA as well as Il6 expression (27- and 174-fold, respectively). These effects were accompanied by a decrease in adipose tissue Adipoq mRNA expression and lower circulating adiponectin levels (p<0.05, both). Furthermore, fetuin-A repressed ADIPOQ mRNA expression of human in vitro differentiated adipocytes (p<0.02) and induced inflammatory cytokine expression. In humans in plasma, fetuin-A correlated positively with high-sensitivity C-reactive protein, a marker of subclinical inflammation (r = 0.26, p = 0.01), and negatively with total- (r = -0.28, p = 0.02) and, particularly, high molecular weight adiponectin (r = -0.36, p = 0.01). CONCLUSIONS AND SIGNIFICANCE: We provide novel evidence that the secreted liver protein fetuin-A induces low-grade inflammation and represses adiponectin production in animals and in humans. These data suggest an important role of fatty liver in the pathophysiology of insulin resistance and atherosclerosis

    Association of Adiponectin SNP+45 and SNP+276 with Type 2 Diabetes in Han Chinese Populations: A Meta-Analysis of 26 Case-Control Studies

    Get PDF
    Recently, many studies have reported that the SNP+45(T>G) and SNP+276(G>T) polymorphisms in the adiponectin gene are associated with type 2 diabetes (T2DM) in the Chinese Han population. However, the previous studies yielded many conflicting results. Thus, a meta-analysis of the association of the adiponectin gene with T2DM in the Chinese Han population is required. In the current study, we first determined the distribution of the adiponectin SNP+276 polymorphism in T2DM and nondiabetes (NDM) control groups. Our results suggested that the genotype and allele frequencies for SNP+276 did not differ significantly between the T2DM and NDM groups. Then, a meta-analysis of 23 case-control studies of SNP+45, with a total of 4161 T2DM patients and 3709 controls, and 11 case-control studies of SNP+276, with 2533 T2DM patients and 2212 controls, was performed. All subjects were Han Chinese. The fixed-effects model and random-effects model were applied for dichotomous outcomes to combine the results of the included studies. The results revealed a trend towards an increased risk of T2DM for the SNP+45G allele as compared with the SNP+45T allele (ORβ€Š=β€Š1.34; 95% CI, 1.11–1.62; P<0.01) in the Chinese Han population. However, there was no association between SNP+276 and T2DM (ORβ€Š=β€Š0.90; 95% CI, 0.73–1.10; Pβ€Š=β€Š0.31). The results of our association study showed there was no association between the adiponectin SNP+276 polymorphism and T2DM in the Yunnan Han population. The meta-analysis results suggested that the SNP+45G allele might be a susceptibility allele for T2DM in the Chinese Han population. However, we did not observe an association between SNP+276 and T2DM
    • …
    corecore